Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Head-mounted miniaturized two-photon microscopes are powerful tools to record neural activity with cellular resolution deep in the mouse brain during unrestrained, free-moving behavior. Two-photon microscopy, however, is traditionally limited in imaging frame rate due to the necessity of raster scanning the laser excitation spot over a large field-of-view (FOV). Here, we present two multiplexed miniature two-photon microscopes (M-MINI2Ps) to increase the imaging frame rate while preserving the spatial resolution. Two different FOVs are imaged simultaneously and then demixed temporally or computationally. We demonstrate large-scale (500×500 µm2 FOV) multiplane calcium imaging in visual cortex and prefrontal cortex in freely moving mice during spontaneous exploration, social behavior, and auditory stimulus. Furthermore, the increased speed of M-MINI2Ps also enables two-photon voltage imaging at 400 Hz over a 380×150 µm2 FOV in freely moving mice. M-MINI2Ps have compact footprints and are compatible with the open-source MINI2P. M-MINI2Ps, together with their design principles, allow the capture of faster physiological dynamics and population recordings over a greater volume than currently possible in freely moving mice, and will be a powerful tool in systems neuroscience. # Data for: Multiplexed miniaturized two-photon microscopy (M-MINI2Ps) Dataset DOI: [10.5061/dryad.kd51c5bkp](10.5061/dryad.kd51c5bkp) ## Description of the data and file structure Calcium and Voltage imaging datasets from Multiplexed Miniaturized Two-Photon Microscopy (M-MINI2P) ### Files and variables #### File: TM_MINI2P_Voltage_Cranial_VisualCortex.zip **Description:** Voltage imaging dataset acquired in mouse primary visual cortex (V1) using the TM-MINI2P system through a cranial window preparation. This .zip file contains two Tif files, corresponding to the top field of view (FOV) and the bottom field of view (FOV) of the demultiplexed recordings. #### File: TM_MINI2P_Calcium_GRIN_PFC_Auditory_Free_vs_Headfix.zip **Description:** Volumetric calcium imaging dataset from mouse prefrontal cortex (PFC) using the TM-MINI2P system with a GRIN lens implant, comparing neural responses during sound stimulation versus quiet periods, under both freely moving and head-fixed conditions. This .zip file contains 12 Tif files: top and bottom fields of view (FOVs) of the multiplexed recordings at three imaging depths (100 μm, 155 μm, and 240 μm from the end of the implanted GRIN lens), with six files from freely moving conditions and six files from head-fixed conditions. #### File: CM_MINI2P_Calcium_Cranial_VisualCortex_SocialBehavior.zip **Description:** Calcium imaging dataset from mouse primary visual cortex (V1) using the CM-MINI2P system through a cranial window, recorded during social interaction and isolated conditions. This .zip file contains 6 Tif files: multiplexed recordings from the top and bottom fields of view (FOVs), and single-FOV recordings at two imaging depths (170 µm and 250 µm). #### File: TM_MINI2P_Calcium_Cranial_VisualCortex.zip **Description:** Multi-depth calcium imaging dataset from mouse primary visual cortex (V1) using the TM-MINI2P system through a cranial window during spontaneous exploration. This .zip file contains 6 Tif files: demultiplexed recordings from two fields of view (FOV1 and FOV2) at three imaging depths (110 µm, 170 µm, and 230 µm). ## Code/software All datasets are in .tiff format and ImageJ can be used for visualization. Analysis of calcium imaging data and voltage imaging data were analyzed using CaImAn and Volpy, respectively, which are open-source packages available at [https://github.com/flatironinstitute/CaImAn](https://github.com/flatironinstitute/CaImAn).more » « less
-
We developed multiplexed miniaturized two-photon microscopes (M-MINI2Ps) that increase imaging speed while preserving high spatial resolution. Using M-MINI2Ps, we performed large-scale volumetric calcium imaging and high-speed voltage imaging in the cortex of freely- behaving mice.more » « lessFree, publicly-accessible full text available May 19, 2026
-
SUMMARY Head-mounted miniaturized two-photon microscopes are powerful tools to record neural activity with cellular resolution deep in the mouse brain during unrestrained, free-moving behavior. Two-photon microscopy, however, is traditionally limited in imaging frame rate due to the necessity of raster scanning the laser excitation spot over a large field-of-view (FOV). Here, we present two multiplexed miniature two-photon microscopes (M-MINI2Ps) to increase the imaging frame rate while preserving the spatial resolution. Two different FOVs are imaged simultaneously and then demixed temporally or computationally. We demonstrate large-scale (500×500 µm2FOV) multiplane calcium imaging in visual cortex and prefrontal cortex in freely moving mice for spontaneous activity and auditory stimulus evoked responses. Furthermore, the increased speed of M-MINI2Ps also enables two-photon voltage imaging at 400 Hz over a 380×150 µm2FOV in freely moving mice. M-MINI2Ps have compact footprints and are compatible with the open-source MINI2P. M-MINI2Ps, together with their design principles, allow the capture of faster physiological dynamics and population recordings over a greater volume than currently possible in freely moving mice, and will be a powerful tool in systems neuroscience.more » « lessFree, publicly-accessible full text available March 10, 2026
-
Abstract We present constraints on cosmological parameters from the Pantheon+ analysis of 1701 light curves of 1550 distinct Type Ia supernovae (SNe Ia) ranging in redshift from z = 0.001 to 2.26. This work features an increased sample size from the addition of multiple cross-calibrated photometric systems of SNe covering an increased redshift span, and improved treatments of systematic uncertainties in comparison to the original Pantheon analysis, which together result in a factor of 2 improvement in cosmological constraining power. For a flat ΛCDM model, we find Ω M = 0.334 ± 0.018 from SNe Ia alone. For a flat w 0 CDM model, we measure w 0 = −0.90 ± 0.14 from SNe Ia alone, H 0 = 73.5 ± 1.1 km s −1 Mpc −1 when including the Cepheid host distances and covariance (SH0ES), and w 0 = − 0.978 − 0.031 + 0.024 when combining the SN likelihood with Planck constraints from the cosmic microwave background (CMB) and baryon acoustic oscillations (BAO); both w 0 values are consistent with a cosmological constant. We also present the most precise measurements to date on the evolution of dark energy in a flat w 0 w a CDM universe, and measure w a = − 0.1 − 2.0 + 0.9 from Pantheon+ SNe Ia alone, H 0 = 73.3 ± 1.1 km s −1 Mpc −1 when including SH0ES Cepheid distances, and w a = − 0.65 − 0.32 + 0.28 when combining Pantheon+ SNe Ia with CMB and BAO data. Finally, we find that systematic uncertainties in the use of SNe Ia along the distance ladder comprise less than one-third of the total uncertainty in the measurement of H 0 and cannot explain the present “Hubble tension” between local measurements and early universe predictions from the cosmological model.more » « less
An official website of the United States government
